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Abstract. A general solution of the elastic fields in 1D hexagonal quasicrystals with point groups
6mm, 62h2h, 6m2h and 6/mhmm is given in terms of four ‘harmonic’ functions Fi (i = 1, 2, 3, 4).
Then we consider the problem of a circular crack embedded in an infinite 1D hexagonal quasicrystal
of point group 6mm. The results obtained in this paper automatically reduce to those in the classical
elasticity theory when the phason field is absent.

1. Introduction

A one-dimensional (1D) quasicrystal (QC) refers to a three-dimensional (3D) solid structure
with periodic arrangement in a plane and quasiperiodic arrangement in the third direction. So
far two kinds of 1D QC have been discovered and studied. Merlin et al [1], Hu et al [2],
Feng et al [3], Terauchi et al [4] and Chen et al [5, 6] prepared a Fibonacci sequence with
alternating layers of GaAs and AlAs or Al0.5Ga0.5As, where the GaAs and AlAs were grown
by molecular-beam epitaxy. He et al [7] found a 1D QC derived from the 2D decagonal QC in
rapidly solidified Al–Ni–Si, Al–Cu–Mn and Al–Cu–Co alloys. Tsai et al [8] and Yang et al [9]
reported the discovery of some stable 1D QCs in the Al–Cu–Fe–Mn system. Recently, Wang
et al [10] derived all 31 possible 1D QC point groups, which can be divided into ten Laue
classes and six 1D QC systems: triclinic, monoclinic, orthorhombic, tetragonal, trigonal and
hexagonal systems, and obtained a generalized Hooke law of a 1D QC. On the other hand, as
in conventional crystals, many structural defects have already been observed experimentally in
QCs and experiments show that the QCs are quite brittle. So the defect problems for QCs, such
as dislocation and crack problems, are studied by many authors [11–16]. However, most of
the studies are made under the assumption that the elastic field induced in QCs is independent
of the variable z. In other words, they consider only the elastic plane or antiplane problems
for QCs because of the complexities of the problems.

In the present paper, a general solution of the elastic fields in 1D hexagonal QCs with
point groups 6mm, 62h2h, 6m2h and 6/mhmm is given in terms of four ‘harmonic’ functions
Fi (i = 1, 2, 3, 4). To illustrate the utility of the general solution, we consider the problem of
a circular crack embedded in an infinite 1D hexagonal QC of point group 6mm. The stresses
and displacements in the whole QC and the mode I stress intensity factor (SIF) on the front
of the circular crack are given. All the results obtained in this paper automatically reduce to
those in the classical elasticity theory when the phason field is absent.
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2. The general solution of the elastic field in 1D hexagonal QCs

According to 1D QC elasticity theory [10], strain– and stress–displacement relations for 1D
hexagonal QCs with point groups 6mm, 62h2h, 6m2h and 6/mhmm, respectively, are

εij = (∂jui + ∂iuj )/2 wij = ∂jwi

σxx = c11∂xux + (c11 − 2c66)∂yuy + c13∂zuz + R1∂zwz

σyy = (c11 − 2c66)∂xux + c11∂yuy + c13∂zuz + R1∂zwz

σzz = c13∂xux + c13∂yuy + c33∂zuz + R2∂zwz

σyz = σzy = c44(∂yuz + ∂zuy) + R3∂ywz

σzx = σxz = c44(∂xuz + ∂zux) + R3∂xwz

σxy = σyx = c66(∂xuy + ∂yux)

Hzz = R1(∂xux + ∂yuy) + R2∂zuz +K1∂zwz

Hzx = R3(∂xuz + ∂zux) +K2∂xwz

Hzy = R3(∂yuz + ∂zuy) +K2∂ywz.

(1)

The equilibrium equations, in the absence of body forces, are

∂xσxx + ∂yσxy + ∂zσxz = 0

∂xσyx + ∂yσyy + ∂zσyz = 0

∂xσzx + ∂yσzy + ∂zσzz = 0

∂xHzx + ∂yHzy + ∂zHzz = 0

(2)

where the z-axis is assumed to be the quasiperiodic axis, and the xy-plane the periodic plane
of the QC, ui , wi phonon and phason displacements in the physical and perpendicular spaces,
respectively, σij and εij phonon stresses and strains, Hij and wij phason stresses and strains,
c11, c13, c33, c44, c66, K1, K2 the elastic constants corresponding to the phonon and phason
fields and R1, R2, R3 the elastic constants of phonon–phason coupling. We should keep in
mind that the subscripts i, j for Hij , wij cannot be exchanged according to their meanings
[17]. It is very important for us to write the boundary conditions correctly.

The substitution of (1) into (2) gives

(c11∂
2
x + c66∂

2
y + c44∂

2
z )ux + (c11 − c66)∂x∂yuy + (c13 + c44)∂x∂zuz + (R1 + R3)∂x∂zwz = 0

(c11 − c66)∂x∂yux + (c66∂
2
x + c11∂

2
y + c44∂

2
z )uy + (c13 + c44)∂y∂zuz + (R1 + R3)∂y∂zwz = 0

(c13 + c44)(∂x∂zux + ∂y∂zuy) + (c44∂
2
x + c44∂

2
y + c33∂

2
z )uz + [R3(∂

2
x + ∂2

y ) + R2∂
2
z ]wz = 0

(R1 + R3)(∂x∂zux + ∂y∂zuy) + [R3(∂
2
x + ∂2

y ) + R2∂
2
z ]uz + [K2(∂

2
x + ∂2

y ) +K1∂
2
z ]wz = 0.

(3)

One can directly verify that equations (3) can be satisfied by

ux = ∂x(F1 + F2 + F3)− ∂yF4 uy = ∂y(F1 + F2 + F3) + ∂xF4

uz = ∂z(m1F1 +m2F2 +m3F3) wz = ∂z(l1F1 + l2F2 + l3F3)
(4)

where the possible functions Fi are the solutions of

(∂2
x + ∂2

y + γ 2
i ∂

2
z )Fi = 0 i = 1, 2, 3, 4 (5)

where the values of mi, li and γi are related by the following expressions:

c44 + (c13 + c44)mi + (R1 + R3)li

c11
= c33mi + R2li

c13 + c44 + c44mi + R3li

= R2mi +K1li

R1 + R3 + R3mi +K2li
= γ 2

i i = 1, 2, 3 c44/c66 = γ 2
4 . (6)
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Note that we use γ 2
i in place of γi for convenience as in [18]. The expressions (6) are

the exact analogues of those used by Fabrikant [18] and Elliott [19] for aeolotropic hexagonal
crystals and in fact can reduce to those when the phason field is absent.

Substituting (4) into (1), and using (5), we have

σxx = [c11∂
2
x + (c11 − 2c66)∂

2
y ](F1 + F2 + F3)− 2c66∂x∂yF4

+c13∂
2
z (m1F1 +m2F2 +m3F3) + R1∂

2
z (l1F1 + l2F2 + l3F3)

σyy = [(c11 − 2c66)∂
2
x + c11∂

2
y ](F1 + F2 + F3) + 2c66∂x∂yF4

+c13∂
2
z (m1F1 +m2F2 +m3F3) + R1∂

2
z (l1F1 + l2F2 + l3F3)

σzz = −c13∂
2
z (γ

2
1 F1 + γ 2

2 F2 + γ 2
3 F3) + c33∂

2
z (m1F1 +m2F2 +m3F3)

+R2∂
2
z (l1F1 + l2F2 + l3F3)

σxy = σyx = 2c66∂x∂y(F1 + F2 + F3) + c66(∂
2
x − ∂2

y )F4

σyz = σzy = c44∂y∂z[(m1 + 1)F1 + (m2 + 1)F2 + (m3 + 1)F3]

+c44∂x∂zF4 + R3∂y∂z(l1F1 + l2F2 + l3F3)

σzx = σxz = c44∂x∂z[(m1 + 1)F1 + (m2 + 1)F2 + (m3 + 1)F3]

−c44∂y∂zF4 + R3∂x∂z(l1F1 + l2F2 + l3F3)

Hzz = −R1∂
2
z (γ

2
1 F1 + γ 2

2 F2 + γ 2
3 F3) + R2∂

2
z (m1F1 +m2F2 +m3F3)

+K1∂
2
z (l1F1 + l2F2 + l3F3)

Hzx = R3∂x∂z[(m1 + 1)F1 + (m2 + 1)F2 + (m3 + 1)F3]

−R3∂y∂zF4 +K2∂x∂z(l1F1 + l2F2 + l3F3)

Hzy = R3∂y∂z[(m1 + 1)F1 + (m2 + 1)F2 + (m3 + 1)F3]

+R3∂x∂zF4 +K2∂y∂z(l1F1 + l2F2 + l3F3).

(7)

In cylindrical polar coordinates, the governing equations (5) are

(∂2
r + 1/r∂r + 1/r2∂2

θ + γ 2
i ∂

2
z )Fi = 0 i = 1, 2, 3, 4 (8)

and the general solutions (4) and (7) are given by

ur = ∂r(F1 + F2 + F3)− 1/r∂θF4 uθ = 1/r∂θ (F1 + F2 + F3) + ∂rF4

uz = ∂z(m1F1 +m2F2 +m3F3) wz = ∂z(l1F1 + l2F2 + l3F3)
(9)

σrr = [c11∂
2
r + (c11 − 2c66)(1/r∂r + 1/r2∂2

θ )](F1 + F2 + F3)

+c13∂
2
z (m1F1 +m2F2 +m3F3)− 2c66(1/r∂r∂θ − 1/r2∂θ )F4

+R1∂
2
z (l1F1 + l2F2 + l3F3)

σθθ = [(c11 − 2c66)∂
2
r + c11(1/r∂r + 1/r2∂2

θ )](F1 + F2 + F3)

+c13∂
2
z (m1F1 +m2F2 +m3F3) + 2c66(1/r∂r∂θ − 1/r2∂θ )F4

+R1∂
2
z (l1F1 + l2F2 + l3F3)

σzz = −c13∂
2
z (γ

2
1 F1 + γ 2

2 F2 + γ 2
3 F3) + c33∂

2
z (m1F1 +m2F2 +m3F3)

+R2∂
2
z (l1F1 + l2F2 + l3F3)

σrθ = σθr = 2c66(1/r∂r∂θ − 1/r2∂θ )(F1 + F2 + F3) + c66(∂
2
r − 1/r∂r − 1/r2∂2

θ )F4

σθz = σzθ = c441/r∂θ∂z[(m1 + 1)F1 + (m2 + 1)F2 + (m3 + 1)F3]

+c44∂r∂zF4 + R31/r∂θ∂z(l1F1 + l2F2 + l3F3) (10)

σzr = σrz = c44∂r∂z[(m1 + 1)F1 + (m2 + 1)F2 + (m3 + 1)F3]

−c441/r∂θ∂zF4 + R3∂r∂z(l1F1 + l2F2 + l3F3)

Hzz = −R1∂
2
z (γ

2
1 F1 + γ 2

2 F2 + γ 2
3 F3) + R2∂

2
z (m1F1 +m2F2 +m3F3)



9384 Y-z Peng and T-y Fan

+K1∂
2
z (l1F1 + l2F2 + l3F3)

Hzr = R3∂r∂z[(m1 + 1)F1 + (m2 + 1)F2 + (m3 + 1)F3]

−R31/r∂θ∂zF4 +K2∂r∂z(l1F1 + l2F2 + l3F3)

Hzθ = R31/r∂θ∂z[(m1 + 1)F1 + (m2 + 1)F2 + (m3 + 1)F3]

+R3∂r∂zF4 +K21/r∂θ∂z(l1F1 + l2F2 + l3F3).

3. The effect of a crack in an infinite 1D hexagonal QC

In the above, we have discussed the general solution of 3D elastic problems for 1D hexagonal
QCs with point groups 6mm, 62h2h, 6m2h and 6/mhmm and found that a solution was possible
in terms of four functions Fi (i = 1, 2, 3, 4). In the following, we consider an infinite 1D
hexagonal QC of point group 6mmweakened by a flat circular crack with radius a in the plane
z = 0, with uniform loads applied normal to the crack faces. Due to symmetry, the problem
can be formulated as follows: find the solution to the set of differential equations (8) for a
half-space z � 0, subject to the mixed boundary conditions in the plane z = 0

σzz = −σ Hzz = −τ 0 < r < a

uz = 0 wz = 0 r > a (11)

σzr = 0 σzθ = 0 r � 0.

Note that cylindrical polar coordinates in this case have been used, and we suppose the
elastic field under this loading condition to be independent of θ . We should also note that
Hrz = Hθz = 0 for r � 0 is satisfied. After the Hankel transformation to equation (8),
considering the boundary condition at infinity:

σij → 0 Hij → 0
√
r2 + z2 → ∞ (12)

the solution of (8) can be expressed as:

Fi(r, z) =
∫ ∞

0
ξAi(ξ) exp(−ξz/γi)J0(ξr) dξ i = 1, 2, 3, 4. (13)

We now show that such a solution can in fact satisfy all our boundary conditions for our
problems. It follows from σzθ = 0 for r � 0 that F4 = 0. From σzz = 0 for r � 0, we have

A3 = −
[
R3l1 + c44(1 +m1)

γ1
A1 +

R3l2 + c44(1 +m2)

γ2
A2

]
γ3

R3l3 + c44(1 +m3)
. (14)

According to the rest of the boundary conditions (11) and expressions (9), (10) and (14),
we get 



∫ ∞

0
ξ 3A1(ξ)J0(ξr) dξ = (c2σ − c4τ)/(c1c4 − c2c3) 0 < r < a∫ ∞

0
ξ 2A1(ξ)J0(ξr) dξ = 0 r > a

(15)




∫ ∞

0
ξ 3A2(ξ)J0(ξr) dξ = (c1σ − c3τ)/(c2c3 − c1c4) 0 < r < a∫ ∞

0
ξ 2A2(ξ)J0(ξr) dξ = 0 r > a

(16)

with

ci = R2mi +K1li − R1γ
2
i

γ 2
i

− [R3li + c44(1 +mi)][R2m3 +K1l3 − R1γ
2
3 ]

γiγ3[R3l3 + c44(1 +m3)]
i = 1, 2
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cj+2 = c33mj + R2lj − c13γ
2
j

γ 2
j

− [R3lj + c44(1 +mj)][c33m3 + R2l3 − c13γ
2
3 ]

γjγ3[R3l3 + c44(1 +m3)]
j = 1, 2.

It follows from (15) and (16) that (see appendix)

A1(ξ) = [2(c2σ − c4τ)/π(c1c4 − c2c3)]ξ
−3(ξ−1 sin aξ − a cos aξ)

A2(ξ) = [2(c1σ − c3τ)/π(c2c3 − c1c4)]ξ
−3(ξ−1 sin aξ − a cos aξ).

(17)

From (9), (10), (13), (14) and (17), the stresses and displacements in the whole QC are
given as follows:

σrr =
3∑
i=1

−c11γ
2
i + c13mi + R1li

γ 2
i

ai[S
0
0 (ρ, zi)− C0

2 (ρ, zi)]

+2c66
a

r

3∑
i=1

ai[S
1
−1(ρ, zi)− C1

1(ρ, zi)]

σθθ =
3∑
i=1

−c11γ
2
i + c13mi + R1li

γ 2
i

ai[S
0
0 (ρ, zi)− C0

2 (ρ, zi)]

+2c66

3∑
i=1

ai

{
S0

0 (ρ, zi)− C0
2 (ρ, zi)−

a

r
[S1

−1(ρ, zi)− C1
1(ρ, zi)]

}

σzz =
3∑
i=1

−c13γ
2
i + c33mi + R2li

γ 2
i

ai[S
0
0 (ρ, zi)− C0

2 (ρ, zi)]

σzr = σrz =
3∑
i=1

c44(mi + 1) + R3li

γi
ai[S

1
0(ρ, zi)− C1

2(ρ, zi)]

Hzz =
3∑
i=1

−R1γ
2
i + R2mi +K1li

γ 2
i

ai[S
0
0 (ρ, zi)− C0

2 (ρ, zi)]

Hzr =
3∑
i=1

R3(mi + 1) +K2li

γi
ai[S

1
0(ρ, zi)− C1

2(ρ, zi)]

ur = −a
3∑
i=1

ai[S
1
−1(ρ, zi)− C1

1(ρ, zi)]

uz = −a
3∑
i=1

mi

γi
ai[S

0
−1(ρ, zi)− C0

1 (ρ, zi)]

wz = −a
3∑
i=1

li

γi
ai[S

0
−1(ρ, zi)− C0

1 (ρ, zi)]

σrθ = σθr = 0 σzθ = σθz = 0 Hzθ = 0 uθ = 0

(18)

where

a1 = 2(c2σ − c4τ)

π(c1c4 − c2c3)
a2 = 2(c1σ − c3τ)

π(c2c3 − c1c4)
a3 = b1a1 + b2a2

bi = −R3li + c44(1 +mi)

γi

γ3

R3l3 + c44(1 +m3)
i = 1, 2

Smn (ρ, z) =
∫ ∞

0
ηn−1 sin η e−ηzJm(ηρ) dη Cmn (ρ, z) =

∫ ∞

0
ηn−2 cos η e−ηzJm(ηρ) dη

η = aξ zi = z/(γia) ρ = r/a.

These integrals may be evaluated by methods given by Watson [20]. In the following we
calculate the most important physical quantity in fracture theory—the stress intensity factor.
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As in the elastic plane or antiplane problems for QCs [13, 14], we define

K)
1 = lim

r→a+

√
2π(r − a)σzz(r, 0). (19)

It follows from (18) that

σzz(r, 0) =



−σ 0 < r < a

−2σ

π

(
arcsin

a

r
− a√

r2 − a2

)
r > a

(20)

Hzz(r, 0) =



−τ 0 < r < a

−2τ

π

(
arcsin

a

r
− a√

r2 − a2

)
r > a.

(21)

The substitution of (20) into (19) yields

K)
1 = 2

√
a/πσ.

The SIF is independent of the elastic constants, which is in accordance with elastic plane
and antiplane problems in QCs [13, 14].

4. Discussion and conclusions

The elastic 3D problems for 1D hexagonal QCs with point groups 6mm, 62h2h, 6m2h and
6/mhmm are studied, and solutions are found in terms of four ‘harmonic’ functions Fi
(i = 1, 2, 3, 4). The solutions for aeolotropic hexagonal crystals can be deduced as a special
case. The SIF for mode I in a cracked 1D hexagonal QC of point group 6mm is independent
of elastic constants, which is identical with the corresponding result in conventional linear
elasticity fracture mechanics [21]. It is of interest to note that the stress component Hzz(r, 0)
of the phason field also exhibits the square root singularity on the front of the crack (see (21)).
If we further extend the SIF for the photon field to the phason field, defining:

K⊥
1 = lim

r→a+

√
2π(r − a)Hzz(r, 0) (22)

then substituting (21) into (22), we have

K⊥
1 = 2

√
a/πτ

which is also independent of elastic constants. Thus it may be predicted that the basic criteria
of fracture based on the fundamentals of conventional linear elasticity fracture mechanics are
no longer suitable for QCs.

On the other hand, we have not imposed any restriction on the reality of our solutions, and
also not discussed the nature of the values of li and mi (i = 1, 2, 3), which themselves affect
the reality of the solutions. To the present authors’ knowledge, although the phonon elastic
constants in QCs can be measured by some experimental methods, the phason and phonon–
phason coupling elastic constants are difficult to measure [22]. Up to now, the relevant data,
such as constants K1, K2, R1, R2 and R3, associated with the present paper are still lacking.
Therefore, the equations and solutions derived here by an analytical approach provide only a
theoretical model.
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Appendix

Equations of the type


∫ ∞

0
yf (y)J0(xy) dy = g(x) 0 < x < 1∫ ∞

0
f (y)J0(xy) dy = 0 x > 1

(A1)

are called dual integral equations and may be solved by the Mellin transform. According to
the theory of dual integral equations [23, 24], the solution of equation (A1) reads

f (x) = 2

π

∫ 1

0
η sin ηx dη

∫ 1

0
g(ηζ )ζ(1 − ζ 2)−

1
2 dζ. (A2)

When G(x) ≡ G (constant), we have

f (x) = 2G

π
x−1(x−1 sin x − cos x). (A3)

In (15), let r/a = x, ξa = y, we get (A1) with

f (y) = y2A1

(y
a

)
g(x) = G = [(c2σ − c4τ)/(c1c4 − c2c3)]a

4.

Thus, according to (A3), we can easily obtain the first of equation (17), and the second can
also be obtained by the same procedure.
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